Intravenous Lidocaine for Acute Pain-
The Ottawa Experience

Dr NAVEEN EIPE, MBBS MD.
Co- Director, Acute Pain Fellowship Program
Clinical Lead, Bariatric Anesthesia
Assistant Professor, uOttawa, Canada.
CME FACULTY DISCLOSURE

Dr. Naveen Eipe has no affiliation with the manufacturer of any commercial product or provider of any service discussed in this CME activity.
Do all your **APS Roads** still lead to the **IVPCA Home**?

- 65F Vasculopath. Postop Below Knee Amputation (GA) in PACU - Pain Crises!
- 73M Laparoscopic sigmoidectomy (GA), converted to open - Postop APS orders?
- 42F Chronic Pain & opioid tolerance, 2wks spine fusion-readmitted poorly controlled pain & Ileus. Analgesic Rescue?
OBJECTIVES

1. **Pharmacology** of Intravenous (IV) Lidocaine
2. **Evidence** for IV lidocaine in Acute Pain
3. The Ottawa Lidocaine *Experience*

Pain is a more terrible lord of mankind than even death itself.

Albert Schweitzer 1931
Amide Local Anesthetic- Sodium Channel Blocker
Stabilizes neuronal membranes, prevents depolarization and reduces action potentials

Preparations- (Xylocaine, Lignocaine, Xylocard- 0.4% to 5% - 10ml- 500ml)

1. Plain Solutions (pH 5.0-7.0)
2. with Epinephrine & antioxidant sodium metabisulfite
3. with preservative methylparaben

IV Lidocaine: Bolus 1-2 mg/kg, Infusion 1-2 mg/kg/ hr
Half Life 1 – 2hrs

• High hepatic extraction ratio & clearance
 proportional to hepatic blood flow
• Renal excretion
Toxicity: narrow therapeutic index-
[severe toxicity may occur slightly above the therapeutic range]
- therapeutic plasma level (2.5-3.5 mcg/mL)
- toxicity (>5mcg/mL)
- ultimately a simple matter of excessive blood concentration
- common cause is a dosing or delivery error

Factors influence-
1. the speed and or dose injected,
2. acid-base status,
3. hypercapnia, hypoxia,
4. plasma protein level and hepatic function
5. Rarely hypersensitivity, idiosyncrasy or diminished tolerance
CNS Toxicity

 Begins at 6mcg/mL & definite at 10mcg/mL awake patients, predictable progression-

• begins with numbness of the tongue, metallic taste, lightheadedness and then tinnitus.
• Visual disturbances progress to muscle twitching, unconsciousness and seizures
• Coma, respiratory arrest and cardiovascular collapse ensue
• More common complaint is a ketamine like psychotropic effects- sedation, sleepiness, light-headedness, relaxation, euphoria, unreality, ‘flying and drunkenness’
CVS Toxicity

Less common than CNS toxicity

[Lidocaine is less cardiotoxic than lipophilic bupivacaine]

- Serum levels >10mcg/mL
- Negative inotropic- conduction problems or after MI
- **Conduction** effects- widened PR interval & QRS duration, sinus tachy. & arrest, partial or complete AV dissociation
- Effects on **vascular** tone- hypertension precedes hypotension
- Potentiated by acidosis, hypercapnia and hypoxia (cardiac suppression & arrhythmia)- ICU patients, under Anesthesia
IV Lidocaine Uses

1. Anti-arrhythmic
2. Blunt sympathetic response to Laryngoscopy
3. Prevent bronchospasm & cough reflex during intubation/extubation
4. Analgesia-Pain on Propofol injection
5. Chronic neuropathic pain
6. Multimodal analgesia
Systemic Effects of IV Lidocaine - ANALGESIA
The Four Dimensions of Pain

John Penning, Ottawa
Figure: The effect of pronociceptive and anti-nociceptive mechanisms on perception of pain. From *Ottawa Anesthesia Primer* copyright 2012 Fig. 17.6 (used with permission).
<table>
<thead>
<tr>
<th>IV Lidocaine- Analgesic Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Pain - in damaged & dysfunctional nerves</td>
</tr>
<tr>
<td>Neural Tissues - reduces action potentials & membrane depolarization</td>
</tr>
<tr>
<td>Tissue - neoproliferation of Na Channels & spontaneous firing</td>
</tr>
<tr>
<td>Spinal Cord - reduces sensitivity & activity at spinal cord neurons</td>
</tr>
<tr>
<td>(central sensitization)</td>
</tr>
<tr>
<td>Acute Pain - Preventive Analgesia</td>
</tr>
<tr>
<td>Anti-inflammatory - Decreased Levels of Cytokines & other markers</td>
</tr>
<tr>
<td>Decreases stress response</td>
</tr>
<tr>
<td>Sympathetic Blockade - restores gut motility & protects anastomosis</td>
</tr>
<tr>
<td>Anti- Hyperalgesic - ?NMDA mediated</td>
</tr>
<tr>
<td>Improves well being</td>
</tr>
</tbody>
</table>
Evidence for Perioperative Use of IV Lidocaine
• IPL shortened post op ileus
• IV Lido in Cholecyst. using radio markers, RCT n=30
• Lido 100mg + 3mg/min x 24hrs
• Lido group showed earlier radiological evidence of motility
• Significantly lower analgesic use on D1

• Direct- excitatory effect smooth muscle
• Indirect- Reducing pain & opioid requirements
• Blockade of sympathetic reflexes
• Reducing catecholamines
• Anti inflammatory effects

Treatment of Postoperative Paralytic Ileus by Intravenous Lidocaine Infusion

Gunnar Rimback, MD, Jean Cassuto, MD, PhD, and Per-Olof Tollesson, MD
- No side effects
- Sig. lower morphine requests and lower pain on movement
- More prominent effects after 36h
- Effects best if administered during surgery
Kuo: Lidocaine vs Epidural (BJA 2006)

- Pain relief, lower opioid consumption, earlier bowel function, less cytokine surge.

- Epidural > IV Lidocaine > Control group

IV Lido useful for epidural difficulties or contraindication.
Lap Colectomy- ERAS (RCT n=45)
- 1.5mg/kg + 2mg/kg/hr x24h
- MAC sparing effect
- Decreased VAS coughing & mobilization
- Early bowel recovery and short hospital stay
- No toxicity, side effects and well tolerated
Wongyingsinn M: Lidocaine vs. Epidural (RAPM 2011)

- Laparoscopic Colorectal RCT n=60
- TEA vs IV Lidocaine plus PCA
- Standardized ERAS Protocol
- No difference in outcomes
- No difference in LOS
- IV Lidocaine has the same impact as Epidurals.
• Complex Spine, RCT n= 116
• IV lido 2mg/kg/hr from induction to 8h (max 200mg/hr)
• 10- 20% Pain reduction
• 25% reduction in Opioid Consumption at 48h
• Significant improvement in overall recovery
Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery

E. Marret¹, M. Rolin², M. Beaussier² and F. Bonnet¹

Impact of Intravenous Lidocaine Infusion on Postoperative Analgesia and Recovery from Surgery
A Systematic Review of Randomized Controlled Trials

Grace C. McCarthy, Solair A. Megalla and Ashraf S. Habib
Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA

Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials
Perfusion intraveineuse périopératoire de lidocaïne pour le contrôle de la douleur postopératoire: une méta-analyse d’études randomisées contrôlées

Louise Vigneault, MD · Alexis F. Turgeon, MD · Dany Côté, MD · François Lauzier, MD · Ryan Zarychanski, MD · Lynne Moore, PhD · Lauralyn A. McIntyre, MD · Pierre C. Nicole, MD · Dean A. Fergusson, PhD
Perioperative Systemic Lidocaine for Postoperative Analgesia and Recovery after Abdominal Surgery: A Meta-analysis of Randomized Controlled Trials

Yanxia Sun, M.D.1 • Tianzuo Li, M.D.1 • Nan Wang, M.D., Ph.D.2 • Yue Yun, M.D.3
Tong J. Gan, M.D., M.H.S., F.R.C.A.4

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>N</th>
<th>Treatment Mean (SD)</th>
<th>Control Mean (SD)</th>
<th>WMD (random) 95% CI</th>
<th>Weight CI</th>
<th>WMD (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 OPEN SURGERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groudine 1998 29</td>
<td>20</td>
<td>4.00 (0.69)</td>
<td>5.10 (2.80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvey 2009 19</td>
<td>11</td>
<td>3.76 (0.80)</td>
<td>4.93 (1.39)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koppert 2004 30</td>
<td>20</td>
<td>12.80 (4.20)</td>
<td>14.20 (3.10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuo 2006 26</td>
<td>20</td>
<td>6.90 (0.80)</td>
<td>7.10 (0.80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: χ² = 4.78, df = 3 (p = 0.19), I² = 37.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 2.19 (p < 0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

02 LAPAROSCOPY						
Lauwick 2009 20	20	3.55 (1.15)	3.55 (1.15)			
Subtotal (95% CI)	20					
Test for heterogeneity: not applicable						
Test for overall effect: z = 0.43 (p < 0.67)						

Total (95% CI) 91 91

Test for heterogeneity: χ² = 7.45, df = 4 (p = 0.11), I² = 46.3%
Test for overall effect: z = 1.70 (p < 0.09)

FIGURE 5. Length of hospital stay. WMD = weighted mean differences.
Continuous intravenous lidocaine in the treatment of paralytic ileus due to severe spinal cord injury

A. Baumann, G. Aebert, O. Klein and P. M. Meert

1Département d’Anesthésie-Réanimation, Hôpital Central, Centre Hospitalier Universitaire de Nancy, Université Henri Poincaré, 54035 Nancy Cedex, France and 2Département de Neurochirurgie, Hôpital Central, Centre Hospitalier Universitaire de Nancy, Université Henri Poincaré, France

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Injury mechanism</th>
<th>SCI level</th>
<th>Ileus length before lidocaine (days)</th>
<th>Transit return after lidocaine (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>34</td>
<td>SC section T9</td>
<td>T9</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>60</td>
<td>Compression T6</td>
<td>T6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>43</td>
<td>T10–T11 fracture</td>
<td>T10</td>
<td>5</td>
<td>None after 36 h</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>30</td>
<td>T10 fracture</td>
<td>T10</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>51</td>
<td>T6–T7 fracture</td>
<td>T6</td>
<td>3</td>
<td>None after 36 h</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>67</td>
<td>T6–T7 fracture</td>
<td>T6</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>59</td>
<td>T11 fracture</td>
<td>Paraparesia</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>
Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy

[Une perfusion peropératoire de lidocaïne réduit les besoins postopératoires en fentanyl chez les patients subissant une cholécystectomie par laparoscopie]

Severine Lauwick MD,* Do Jun Kim MSc,* Giuliano Michelagnoli MD,* Giovanni Liane Feldman MD,† Gerald Fried MD,† Franco Carli MD MPH.†

IV Lidocaine Use-
The Good, The Bad & The Ugly!
Lack of Impact of Intravenous Lidocaine on Analgesia, Functional Recovery, and Nociceptive Pain Threshold after Total Hip Arthroplasty

Frédéric Martin, M.D.,* Kamel Cherif, M.D.,† Marc Emile Gentili, M.D., Ph.D.,‡ Dominique Enel, M.D.,‡ Emiri Abe, Pharm.D.,§ Jean Claude Alvarez, Pharm.D., Ph.D.,∥ Jean Xavier Mazoit, M.D., Ph.D.,‡ Marcel Chauvin, M.D., Ph.D.,∥ Didier Bouhassira, M.D., Ph.D.,†† Dominique Retcher, M.D., Ph.D.**

Table 2. Perioperative Opioid Consumption

<table>
<thead>
<tr>
<th></th>
<th>Lidocaine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perioperative sufentanil dose, μg</td>
<td>50 [40-66]</td>
<td>45 [35-54]</td>
</tr>
<tr>
<td>Morphine given in PACU, mg</td>
<td>12 [9-20]</td>
<td>18 [12-20]</td>
</tr>
<tr>
<td>0-24 h cumulative postoperative morphine consumption without PACU, mg</td>
<td>17 [9-28]</td>
<td>15 [9-23]</td>
</tr>
<tr>
<td>0-48 h cumulative postoperative morphine consumption including PACU, mg</td>
<td>43 [28-63]</td>
<td>46 [32-57]</td>
</tr>
</tbody>
</table>

- THR, RCT n=60, Lido 1.5mg/kg x 1h
- Post op IV PCA morphine
- No effect on VAS- rest & movement (24h, 48h & 3mo.)
- No reduction in PCA use,
- No decrease in hyperalgesia or hospital stay
Equivalent Outcomes During Postoperative Patient-Controlled Intravenous Analgesia with Lidocaine Plus Morphine Versus Morphine Alone

M. Soledad Cepeda, MD*, Martha Delgado, MD*, Marion Ponce, MD*, Carlos A. Cruz, MD*, and Daniel B. Carr, MD†

Departments of Anesthesia, *San Ignacio Hospital, Bogotá, Colombia, and †New England Medical Center, Boston, Massachusetts

To evaluate a possible opioid-sparing effect of intravenous lidocaine we conducted a randomized, double-blind clinical trial. Patients undergoing intraabdominal surgery under general anesthesia were treated with patient-controlled analgesia (PCA) in three groups: Group 1 (n = 100; morphine 1 mg/mL), Group 2 (n = 44; morphine 1 mg/mL plus lidocaine 10 mg/mL), and Group 3 (n = 51; morphine 1 mg/mL plus lidocaine 20 mg/mL). Pain was evaluated using a 0–10 visual analog scale in the postanesthesia care unit (PACU) during deep inhalation at 15 and 30 min, and at 1, 2, and 4 h after arrival in the PACU, and continued after PACU discharge every 4 h for 36 h. Patients whose pain was more than 4/10 in the PACU received 2.5 mL of the respective solutions every 7 min until pain was less than 4/10; then PCA was started. The number of bolus and cumulative drug doses during the study were recorded. Along with pain intensity, we assessed vital signs and side effects. Time to acceptance of oral liquids was also determined. Adding lidocaine 10 or 20 mg/mL to PCA morphine 1 mg/mL for acute pain treatment after abdominal surgery yielded no differences in opioid use, pain levels, or side effects.

(Anesth Analg 1996;83:102–6)
The Effect of Intravenous Lidocaine on Intraoperative Somatosensory Evoked Potentials During Scoliosis Surgery

Virginie Chaves-Vischer, MD*, Robert Brustowicz, MD†, and Sandra L. Helmers, MD‡

Department of Neurology, *Division of Neurophysiology and †Anesthesiology, Harvard Medical School, Children's Hospital, Boston, Massachusetts

In conclusion, our observations in two patients undergoing scoliosis surgery show that an IV bolus of lidocaine can transiently depress, or even suppress, the intraoperative cortical SSEP, and may therefore mimic spinal cord ischemia. Although these results

The Effects of Systemic Lidocaine on Airway Tone and Pulmonary Function in Asthmatic Subjects

CONCLUSION: Lidocaine, which reduces airway responsiveness to drugs that cause bronchospasm through sensory nerve activation, did not reduce baseline airway tone. Instead, even when administered IV, lidocaine significantly increased airway tone and caused airway narrowing. Therefore, while the administration of lidocaine can prevent intubation-induced bronchospasm, the airways should be constantly monitored by auscultation even during IV lidocaine administration.

Chang HY, Togias A, Brown RH. Anesth Analg. 2007 May;104(5):1109-15
• 79 yr, 50kg gyne Sx
• GA + Lidocaine, accidental 800mg bolus iv
• set 100mg/min instead of 100mg/hr
• BIS 80 to 0, BP 55/35, HR 70/min, PACs
• Resuscitation- BIS returned to 60 after 10 mins
• Sx proceeded, Lido restarted and BIS remained normal
• After 3h Sx, remained weak and drowsy
• extubated 1h later in PACU, recovered fully, no sequelae.
Anesthesiologist Mistakenly Administers Fatal Dose of Lidocaine

Death is blamed on medication mix-up.

Published: March 19, 2014

Category: Outpatient Surgery News and Trends > General Surgical News and Reports

A Connecticut anesthesiologist who administered a fatal dose of **lidocaine** instead of the intended **Hespan** has been fined $7,500 and reprimanded by the state's medical examining board.
Lidocaine and Acute Pain - The Ottawa Experience
Intravenous lidocaine does not reduce length of hospital stay following abdominal hysterectomy

La lidocaïne intraveineuse ne réduit pas la durée de séjour à l’hôpital après une hystérectomie abdominale

Gregory L. Bryson, MD · Illia Charapov, MD ·
Gregory Kroleczyk, MD · Monica Taljaard, PhD ·
Dennis Reid, MB ChB

Received: 29 January 2010/Accepted: 10 May 2010/Published online: 8 June 2010
© Canadian Anesthesiologists’ Society 2010

Table 4 Numeric rating scores for pain

<table>
<thead>
<tr>
<th></th>
<th>Lidocaine (n = 44)</th>
<th>Control (n = 46)</th>
<th>Mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRS rest (PACU)</td>
<td>3.9 (3.0)</td>
<td>4.6 (2.6)</td>
<td>−0.7 (−1.9 to 0.5)</td>
</tr>
<tr>
<td>NRS active (PACU)</td>
<td>5.3 (3.3)</td>
<td>5.3 (2.9)</td>
<td>0.0 (−1.3 to 1.3)</td>
</tr>
<tr>
<td>NRS rest (6 hr)</td>
<td>3.1 (2.0)</td>
<td>3.2 (1.9)</td>
<td>−0.1 (−0.9 to 0.7)</td>
</tr>
<tr>
<td>NRS active (6 hr)</td>
<td>4.7 (2.4)</td>
<td>5.3 (2.1)</td>
<td>−0.6 (−1.5 to 0.4)</td>
</tr>
<tr>
<td>NRS rest (24 hr)</td>
<td>2.3 (1.7)</td>
<td>2.0 (1.7)</td>
<td>0.3 (−0.5 to 1.0)</td>
</tr>
<tr>
<td>NRS active (24 hr)</td>
<td>4.4 (2.3)</td>
<td>4.6 (2.2)</td>
<td>−0.2 (−1.1 to 0.7)</td>
</tr>
<tr>
<td>NRS rest (48 hr)</td>
<td>1.4 (1.2)</td>
<td>1.3 (1.3)</td>
<td>0.2 (−0.4 to 0.7)</td>
</tr>
<tr>
<td>NRS active (48 hr)</td>
<td>3.5 (2.0)</td>
<td>3.3 (2.4)</td>
<td>0.7 (−0.7 to 1.0)</td>
</tr>
</tbody>
</table>
IV Lidocaine- Intraoperative Indications

<table>
<thead>
<tr>
<th>Sans peridurale (Non Epidural)</th>
<th>Douleur difficile (Difficult Pain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GI/ GU/ HPB/ Vascular/ ERAS</td>
<td>• major Spines, trauma</td>
</tr>
<tr>
<td>• contraindicated</td>
<td>• chronic pain, vascular</td>
</tr>
<tr>
<td>• refused</td>
<td>• opioid tolerant,</td>
</tr>
<tr>
<td>• difficult/ failed</td>
<td>• substance abuse etc.</td>
</tr>
<tr>
<td>Dose</td>
<td>Medication</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1-2 mcg/kg/hr</td>
<td>Fentanyl</td>
</tr>
<tr>
<td>0.1-0.2 mg/kg/hr</td>
<td>Ketamine</td>
</tr>
<tr>
<td>1-2 mg/kg/hr</td>
<td>Lidocaine</td>
</tr>
</tbody>
</table>

FentaKetaCaine [Program Syringe Pump for Lidocaine]
The initial dose of lidocaine will be administered in a clinical area where cardiac monitoring and resuscitative equipment is available e.g. Post-Anesthesia Care Unit (PACU), Pain Management Unit (PMU), or clinical unit (provided 12-lead ECG, resuscitative equipment/cardiac arrest cart, non invasive blood pressure and pulse oximeter are available to monitor vital signs). The anesthesiologist or palliative care physician must remain in attendance with the patient for at least 15 minutes after administration of the lidocaine bolus. An exception regarding location of treatment may be made for palliative care patients. It is the physician’s responsibility to co-ordinate the location.

Following the initial doses of lidocaine, patients whose pain control is maintained with a continuous lidocaine infusion do not require cardiac monitoring and continuous BP monitoring. The Ottawa Hospital Drug Parenteral Manual requires cardiac monitoring during a lidocaine infusion due to the most common indication of intravenous lidocaine as a cardiac antiarrhythmic medication. Since this is not the indication for the use of lidocaine in this instance, the requirement for continuous cardiac monitoring during the continuous infusion is set aside.
Acute Pain Service patients:

- Lidocaine 1.5 mg/kg given slow IV push over 2-4 minutes then initiate infusion of 0.5-2 mg/kg/hr at the discretion of attending anesthesiologist. Usually an infusion of 1 mg/kg/hr is a good starting dose. This infusion can be adjusted by 0.25-0.5 mg/kg/hr based on clinical response (pain scores) or signs of toxicity. Allow 8 hours for steady-state serum levels to be achieved before

During treatment of Lidocaine administration (by Physician)

1. Assess pain q 15 minutes until pain is stable, or as determined by the physician.

2. Continuous visual patient monitoring during first 20 minutes after initiation of infusion, and then as per Physician’s orders:
 - Oxygen saturation, blood pressure and heart rate: q5 minutes for first 20 minutes, then q30 minutes for 1 hour, then as per Physician’s orders.
 - Side effects
 - Sedation:
 0 None-Fully awake, alert
 1 Mild-occasionally drowsy, easily aroused
 2 Moderate-frequently drowsy; easily roused, drifts off to sleep during conversation
 3 Severe-Somnolent; difficult to arouse, minimal or no response to stimuli
 S Sleep-Normal sleep; easily aroused, RR> 10 and even, not shallow

3. ECG monitoring may be carried out at the discretion of the attending physician.

4. Administer Midazolam 1-2mgs IV PRN if patient develops twitching, tremors or seizures.
1. Alternative to Regional Anesthetic Technique
 • GI/ GU Sx- Epidural required- not done/ inadequate
 • Polytrauma- multiple/ significant injuries
 • Rib Fractures
 • large areas of superficial injury, burns, degloving, crush injury

2. ERAS
 • Laparoscopic Surgery

3. Difficult to treat APS patients- Spines and Amputations
 • Diagnosis- Acute Neuropathic Pain
 • Therapy- Single bolus/ Infusion in Chronic pain/ Opioid tolerant

4. Opioid Sparing Technique- Obese, OSA, elderly, sensitive
Graph 1: Indications for intravenous lidocaine

- Others: 4.90%
- Orthopedic: 3.40%
- Hysterectomy: 5.90%
- Amputations: 6.90%
- Trauma: 12.70%
- Spine surgery: 16.70%
- Bowel surgery: 49%

Graph 2: Analgesic response to lidocaine

- Rest: Decrease over time
- Activity: Decrease over time
Simulated Safety of Lidocaine Infusion (without bolus)

Kuipers JA et al. Modeling population pharmacokinetics of lidocaine: should cardiac output be included as a patient factor? Anesthesiology. 2001; 94:566-73.
Simulated Safety of Discontinuing Lidocaine Infusion

Accidents Happen -
1 Near Miss,
2 Empty Bags &
3 Steps taken!

• Postop **Spine**- Sent to Xray Dept.- Came back with empty lidocaine bag- off the pump- feeling much much better!
• Postop **Laparotomy**- Sent from PACU to Floor- On transfer from stretcher to bed- unresponsive- code blue- resuscitation- empty lidocaine bag!

Steps taken-
1. Reduced Bag **Volume** 500ml to 250ml (0.4% Lido = 1gm)
2. Proper handover & **Bags/ lines** labelled for patient/ Lidocaine
3. Run through PCA **tubing** with anti- siphon valve and anti- reflux lines
Implementation of a policy for IV Lidocaine

Summary- IV Lidocaine for Acute Pain

IV Lidocaine-
- *Anti*-inflammatory
- *Anti nociceptive* - analgesic
- *Anti pronociceptive* - antihyperalgesic
- *Direct/ Indirect effect on GI*

- **Evidence**- decreases pain, opioids & PONV, ileus, enhances bowel recovery, feeding, ambulation, LOS and quality of care (ERAS)
- **Dose**- bolus (1-2 mg/kg) & infusion (1-2 mg/kg/hr) upto 24hrs, titrate
- **Indications**- Alternative to Epidural & Acute on Chronic Pain
- Careful monitoring- CNS symptoms precede CVS signs
- **Not All** patients & surgical models,
- Diagnosis & Treatment of Acute Hyperalgesia & Neuropathic pain
- Develop local policy- **Ottawa Experience**- safe & well tolerated!
All APS Roads do not lead to the PCA Home!

- **AX**(65F) Vasculopath. Postop Below Knee Amputation (GA) in PACU- Pain Crises!

- **BY**(73M): Laparoscopic sigmoidectomy (GA), converted to Laparotomy. Postop APS orders?

- **CZ**(42M): Chronic Pain/ Opioid Tolerant, 2wks postop in ER- poorly controlled pain with Ileus. Analgesic Rescue?

1. **IVPCA**
2. **Ketamine**
3. **Lidocaine**
4. **Pregabalin**
One good thing about Lidocaine when it hits you, you feel no pain. - Bob Marley

Intravenous Lidocaine for Acute Pain

- Pharmacology

- Evidence

- Experience

Questions/Comments? - Thank You!

Naveen Eipe, MD neipe@toh.on.ca

Twitter @NaveenEipe